13,054 research outputs found

    Rotation curves and metallicity gradients from HII regions in spiral galaxies

    Full text link
    In this paper we study long slit spectra in the region of Hα\alpha emission line of a sample of 111 spiral galaxies with recognizable and well defined spiral morphology and with a well determined environmental status, ranging from isolation to non-disruptive interaction with satellites or companions. The form and properties of the rotation curves are considered as a function of the isolation degree, morphological type and luminosity. The line ratios are used to estimate the metallicity of all the detected HII regions, thus producing a composite metallicity profile for different types of spirals. We have found that isolated galaxies tend to be of later types and lower luminosity than the interacting galaxies. The outer parts of the rotation curves of isolated galaxies tend to be flatter than in interacting galaxies, but they show similar relations between global parameters. The scatter of the Tully-Fisher relation defined by isolated galaxies is significantly lower than that of interacting galaxies. The [NII]/Hα\alpha ratios, used as metallicity indicator, show a clear trend between Z and morphological type, t, with earlier spirals showing larger ratios; this trend is tighter when instead of t the gradient of the inner rotation curve, G, is used; no trend is found with the interaction status. The Z-gradient of the disks depends on the type, being almost flat for early spirals, and increasing for later types. The [NII]/Hα\alpha ratios measured for disk HII regions of interacting galaxies are higher than for normal/isolated objects, even if all the galaxy families present similar distributions of Hα\alpha Equivalent Width.Comment: accepted for publication in A&A (tables for HII region parameters incomplete, contact [email protected] for the whole set of tables

    Towards Autopoietic Computing

    Full text link
    A key challenge in modern computing is to develop systems that address complex, dynamic problems in a scalable and efficient way, because the increasing complexity of software makes designing and maintaining efficient and flexible systems increasingly difficult. Biological systems are thought to possess robust, scalable processing paradigms that can automatically manage complex, dynamic problem spaces, possessing several properties that may be useful in computer systems. The biological properties of self-organisation, self-replication, self-management, and scalability are addressed in an interesting way by autopoiesis, a descriptive theory of the cell founded on the concept of a system's circular organisation to define its boundary with its environment. In this paper, therefore, we review the main concepts of autopoiesis and then discuss how they could be related to fundamental concepts and theories of computation. The paper is conceptual in nature and the emphasis is on the review of other people's work in this area as part of a longer-term strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure

    Interpersonal violence in peacetime Malawi.

    Get PDF
    Background: The contribution of interpersonal violence (IPV) to trauma burden varies greatly by region. The high rates of IPV in sub-Saharan Africa are thought to relate in part to the high rates of collective violence. Malawi, a country with no history of internal collective violence, provides an excellent setting to evaluate whether collective violence drives the high rates of IPV in this region. Methods: This is a retrospective review of a prospective trauma registry from 2009 through 2016 at Kamuzu Central Hospital in Lilongwe, Malawi. Adult (\u3e16 years) victims of IPV were compared with non-intentional trauma victims. Log binomial regression determined factors associated with increased risk of mortality for victims of IPV. Results: Of 72 488 trauma patients, 25 008 (34.5%) suffered IPV. Victims of IPV were more often male (80.2% vs. 74.8%; p Discussion: Even in a sub-Saharan country that never experienced internal collective violence, IPV injury rates are high. Public health efforts to measure and address alcohol use, and studies to determine the role of mob justice, poverty, and intimate partner violence in IPV, in Malawi are needed. Level of evidence: Level III

    Glasses in meteorites and the Primary Liquid Condensation Model

    Get PDF
    Meteoritic glasses are quenched samples of the silicate liquid that was involved in the formation of chondritic constituents and achondritic rocks. Conventional genetic models see them as residual liquids from which the associated minerals crystallized – as demonstrated by terrestrial igneous rocks – or as locally produced impact melts. These models are all closely related to our experiences with terrestrial geology and petrology and, consequently,make planetary processes, such asmixing andmelting of solid precursors and planetary differentiation primarily responsible for the formation of the large variety of meteoritic rocks. However, different types of glasses (e.g., glass inclusions in minerals, mesostasis glasses, glass pockets, glass veins) in a variety of meteorites (chondrites and achondrites) have particular chemical features that cannot be reconciled with these models: 1)Glasses do not showthe chemical signature of crystallization of theminerals they are associated with – a geochemical impossibility; 2) All types of glasses in all types of meteorites reported here show very similar trace element abundance pattern with the refractory lithophile element abundances at ~ 10–20 x CI chondrite abundances. 3) All refractory element abundance patterns in primitive glasses have unfractionated solar relative abundances (they are flat) and medium refractory and volatile elements are depleted relative to the refractory elements. 4) Medium volatile and volatile elements, when present, display chaotic abundance patterns. The ubiquitous pattern for refractory elements signals vapor fractionation rather than geochemical (“igneous”) fractionation or stochasticmixing of precursorminerals (as in shockmelts). It indicates that the same process must have been involved in the origin of all glasses in chondritic constituents aswell as achondritic rocks and, consequently, in the formation of allmeteorite types investigated. The chaotic abundances of volatile elements signal that chaotic processes were involved during condensation. 279 Herewe present a newmodel - the Primary Liquid Condensation (PLC)model – as an alternative to the currently acceptedmodels for the formation ofmeteoritic rocks. The PLCmodel is capable of accommodating all observational and chemical data accumulated so far on meteorites – with the exception of enstatite and SNC meteorites, which record physico-chemical conditions that were different fromthose of themajority ofmeteoritic rocks (the processes, however, could have been the same). The new model identifies a new role for silicate liquids in cosmochemistry as being an essential phase for the formation of early crystalline condensates from the hot solar nebula. Liquids are identified to have been the first major phase to condense from the solar nebula. In order to be capable to produce early liquid condensates, the nebula must have been either enriched in condensable elements over solar abundances (> 500 times) or was at total pressuresmuch higher than the canonically predicted ones (> 500 times, > 0.5 bar ). Our data require that this liquid – we named it “universal liquid” (UL) - had a refractory composition (Ca-Mg-Al-silicate or CMAS) and facilitated condensation of the major minerals for chondritic constituents as well as for achondritic rocks. The process possibly was a variant of the vapor-liquid-solid (VLS) condensation process, which is utilized in industrial crystal growth. Thereby, the liquid condenses first, then nucleates a crystal of the species that is oversaturated in the vapor – in the case of the solar nebula usually olivine. As this olivine grows from the liquid, it depletes the liquid in Mg and Si. The liquid tries to maintain equilibrium with the solar nebula. Thereby, Mg and Si are replenished by condensation from the gas phase and all incompatible elements are kept at an equilibrium concentration by condensation-evaporation equilibrium. Thus, the contents of incompatible refractory elements are kept at an approximately constant level throughout crystallization of the major minerals olivine and pyroxene. This way not only the abundances of incompatible refractory elements are kept at a constant level but also their relative abundances remain unfractionated solar. The UL also represents the long sought for refractory component of chondritic constituents and appears also to be the source of achondritic “igneous” rocks. Variations in the amount of liquid available, the liquid condensation and crystal nucleation rates, as well as different crystal-liquid mixing proportion will allow the formation of objects of highly variable composition. The final composition (chemical and isotopic) of any chondritic object or achondrite, as well as that of the associated glasses, will be determined by different degrees of post-formational metasomatic elemental exchange processes taking place between solids and the cooling nebular gas. These processes add medium volatile and volatile elements to the products of high temperature condensation. As these processes usually don’t run to completion, an infinite number of chaotic compositional variations are produced – and this is exactly what we observe in meteorites.Fil: Varela, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Kurat, G.. Vienna University of Technology; Austri

    Glasses in coarse-grained micrometeorites

    Get PDF
    Micrometeorites (MMs, interplanetary dust particles with 25 - 500 μm diameters) carry the main mass of extraterrestrial matter that is captured by Earth. The coarse-grained MMs mainly consist of olivine aggregates, which - as their counterparts in CC chondrites - also contain pyroxenes and glass. We studied clear glasses in four coarse-grained crystalline MMs (10M12, M92-6b, AM9, and Mc7-10), which were collected from the ice at Cap Prudhomme, Antarctica. Previous studies of glasses (e.g., glass inclusions trapped in olivine and clear mesostasis glass) in carbonaceous and ordinary chondrites showed that these phases could keep memory of the physical-chemical conditions to which extraterrestrial matter was exposed. Here we compare the chemical compositions of MM glasses and glasses from CM chondrites with that in experimentally heated objects from the Allende CV chondrite and with glasses from cometary particles. Our results show that MMs were heated to variable degrees (during entry through the terrestrial atmosphere), which caused a range from very little chemical modification of the glass to total melting of the precursor object. Such modifications include dissolution of minerals in the melted glass precursor and some loss of volatile alkali elements. The chemical composition of all precursor glasses in the MMs investigated is not primitive such as glasses in CM and CR chondrite objects. It shows signs of pre-terrestrial chemical modification, e.g., metasomatic enrichments in Na and Fe2+ presumably in the solar nebula. Glasses of MMs heated to very low degree have a chemical composition indistinguishable from that of glasses in comet Wild 2 particles; giving additional evidence that interplanetary dust (e.g., Antarctic MMs) possibly represents samples from comets. © 2009 Elsevier B.V. All rights reserved.Fil: Varela, Maria Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan. Complejo Astronómico "El Leoncito". Universidad Nacional de Córdoba. Complejo Astronómico "El Leoncito". Universidad Nacional de la Plata. Complejo Astronómico "El Leoncito". Universidad Nacional de San Juan. Complejo Astronómico "El Leoncito"; ArgentinaFil: Kurat, G.. Universidad de Viena; Austri

    Deep Multi-instance Networks with Sparse Label Assignment for Whole Mammogram Classification

    Full text link
    Mammogram classification is directly related to computer-aided diagnosis of breast cancer. Traditional methods rely on regions of interest (ROIs) which require great efforts to annotate. Inspired by the success of using deep convolutional features for natural image analysis and multi-instance learning (MIL) for labeling a set of instances/patches, we propose end-to-end trained deep multi-instance networks for mass classification based on whole mammogram without the aforementioned ROIs. We explore three different schemes to construct deep multi-instance networks for whole mammogram classification. Experimental results on the INbreast dataset demonstrate the robustness of proposed networks compared to previous work using segmentation and detection annotations.Comment: MICCAI 2017 Camera Read
    • …
    corecore